Next Challenges in Optical Networking Research:
Ultra High Speed Networking, Flexibility, Programmability

High Performance Networks Group
Dimitra Simeonidou: dsimeo@essex.ac.uk
Optical Networks: Ultra High Speed Intelligent Network Infrastructure

- Data Plane: Flexible, Elastic Optical Layer (FP7 STRONGEST, FP7 call 8 IDEALIST)
 - Architectures on Demand
- Control Plane (FP7 MAINS)
 - Targeted extensions for dynamic and data plane-aware network services
- Optical Network Infrastructure Virtualisation, Slicing and Isolation (FP7 GEYSERS)
- Software/Hardware Defined Network Programmability (FIRE OFELIA, FP7 call 8 DyNAmIC)
 - For infrastructure and service adaptation
- Optical Network Cognition (FP7 CHRON, UK EPSRC Photonics HyperHighway)
Data Plane:
Flexible, Elastic Optical Layer
(FP7 STRONGEST)
Proposed Solution: Elastic Resource Allocation

- Flexible allocation of resources in time and frequency in order to:
 - Accommodate applications with **arbitrary requirements**

![Video conference/Virtual Presence](image1)

![High-speed data transmission 400G, 1T](image2)

![Education/Remote Learning](image3)

![Gaming](image4)
- Elastic BW allocation to enable:
 - Support for high-speed channels with arbitrary bandwidth requirements (beyond 100G)
 - Better spectral efficiency for lower bit rates

- Elastic time allocation for:
 - Finer all-optical bandwidth granularities
 - Efficient all-optical switching of sub-wavelength traffic

Continuous channels at various bit-rates

Spectrum shared among several users

User traffic at various bit-rates and modulation formats
Architecture on Demand

- Adapt to traffic profile
- Support for arbitrary switching-granularity
- Dynamic architecture reconfiguration
- Fast fault recovery
 - Faulty module replacement
 - Alternative architecture
- Modular design to aid with infrastructure planning
- Easy to upgrade with new modules
 - Wavelength conversion
 - Regeneration
 - Other signal processing
Architecture on Demand (FP7 STRONGEST)

- Aimed to develop an optical node that can adapt its architecture according to the traffic profile and supports elastic allocation of resources.
Architecture on Demand (FP7 STRONGEST)

- Aimed to develop an optical node that can adapt its architecture according to the traffic profile and supports elastic allocation of resources.
Architecture on Demand (FP7 STRONGEST)

- Aimed to develop an optical node that can adapt its architecture according to the traffic profile and supports elastic allocation of resources.
Flexible OXC Configuration

- Backplane implemented with 96x96 3D-MEMS
- Asymmetric configuration per port
- Flexibility to implement and test several switch architectures on-the-fly
- Switching time 20ms
Flexible OXC Configuration

- Backplane implemented with 96x96 3D-MEMS
- Asymmetric configuration per port
- Flexibility to implement and test several switch architectures on-the-fly
- Switching time 20ms
Flexible OXC Configuration

- Backplane implemented with 96x96 3D-MEMS
- Asymmetric configuration per port
- Flexibility to implement and test several switch architectures on-the-fly
- Switching time 20ms
Flexible OXC Configuration

- Backplane implemented with 96x96 3D-MEMS
- Asymmetric configuration per port
- Flexibility to implement and test several switch architectures on-the-fly
- Switching time 20ms
Field Trial Description

- **BT Tower, London**
- **40G, 100G Coherent Tx**
- **10G / 40G, 100G Coherent Tx**
- **Flex-grid OXC**
- **Flex-grid OXC**
- **40G, 100G Coherent Rx**

- **BT Labs, Ipswich**
- **DCM-less**
- **40G, 100G Coherent Tx**
- **Flex grid OXC**
- **10G, 100G Coherent Rx**

- **University of Essex, Colchester**
- **40G, 555G Tx**
- **10G Tx**
- **Link-2 110 km**

- **JANET Aurora Dark Fibre Link PoP, Chelmsford**
- **Link-1 410 km**

- **Optical Back Plane**
- **Node-2 Flexible Architecture**
- **SSS: Spectrum Selective Switching**
- **DEM: Optical Demultiplexing**
- **SD1: Spectrum defragmentation 1**
- **SD2: Spectrum defragmentation 2**

- **205 km**
- **50 km**
- **55 km**
- **13.1 km**
- **36.1 km**
- **14.7 km**
- **53.6 km**
- **87.3 km**
- **50 km**
- **55 km**

- **BT Lab Ipswich**
- **PoP, Chelmsford**
- **University of Essex, Colchester**

- **Ipswich-London-Ipswich = 410 km**
- **Ipswich-London = 410 km**
IDEALIST in summary

- Funding scheme: IP - Call: **ICT Call 8**
- Duration: **3 years**
- Target budget: **8 M€**
- Consortium:

<table>
<thead>
<tr>
<th>Operators</th>
<th>British Telecom (UK), Telekom Deutschland (Germany)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telefonica I+D</td>
<td></td>
</tr>
<tr>
<td>(Spain),</td>
<td></td>
</tr>
<tr>
<td>Telecom Italia</td>
<td></td>
</tr>
<tr>
<td>(Italy),</td>
<td></td>
</tr>
<tr>
<td>Operators</td>
<td></td>
</tr>
<tr>
<td>Equipment Vendors</td>
<td></td>
</tr>
<tr>
<td>Alcatel-Lucent Bell Labs (France)</td>
<td>Ericsson (Italy)</td>
</tr>
<tr>
<td>Alcatel Lucent (Italy)</td>
<td>Nokia Siemens Networks (Germany)</td>
</tr>
<tr>
<td>SMEs</td>
<td></td>
</tr>
<tr>
<td>Naudit (Spain)</td>
<td>Old Dog (UK)</td>
</tr>
<tr>
<td>Old Dog (UK)</td>
<td>Lexden (UK)</td>
</tr>
<tr>
<td>Research Centers</td>
<td></td>
</tr>
<tr>
<td>CTTC (Spain)</td>
<td>Coritel (Italy)</td>
</tr>
<tr>
<td>Universities</td>
<td></td>
</tr>
<tr>
<td>UPC (Spain)</td>
<td>UEssex (UK)</td>
</tr>
<tr>
<td>CNIT (Italy)</td>
<td>HHI (Germany)</td>
</tr>
<tr>
<td>CNIT (Italy)</td>
<td>UoPa (Greece)</td>
</tr>
<tr>
<td>CNIT (Italy)</td>
<td></td>
</tr>
<tr>
<td>CNIT (Italy)</td>
<td></td>
</tr>
<tr>
<td>UoP (Greece)</td>
<td>WUT (Poland)</td>
</tr>
</tbody>
</table>
IDEALIST Overall Objective

- IDEALIST aims at developing pre-commercial data and control plane solutions based on elastic networks enabling adaptive network and service interworking.
IDEALIST Specific Objectives

Idealist contributions

Elastic Optical Networks design

Data Plane
- Transmission beyond 400G
- Bandwidth Variable Transponders
- Gridless Switching technologies
- Grooming technologies for elastic networks (e.g. IP, OTN, etc)

Nodes architecture
- Core nodes based on bandwidth variable transmission over gridless optical networks
- Metro-Core border nodes enabling metro and core data, control and OAM interworking
- Interconnection between multiple vendors

Control and Management Plane
- GMPLS and PCEP extensions for multivendor elastic networks including multidomain and multilayer aspects
- Dynamic network resources allocation (e.g. spectrum) according to traffic patterns behavior

Implementation and demonstration of prototypes

Standardization
Optical Network Virtualisation
(FP7 GEYSERS project)
What Is Resource (Infrastructure) Virtualization?

- Network virtualization
 - Router/switch virtualization
 - Bandwidth and connectivity virtualization
 - Layered based Virtualization
 - **Layer1 Photonic**, Layer II CG-Ethernet, Layer III IP
- IT virtualization
 - Hardware virtualization
 - Local computing/storage virtualization
 - Networked computing/storage virtualization
Optical Network Virtualization
Virtualization of Optical Resources

Optical Resource partitioning

Optical Resource Aggregation

- Physical Node (OXC/ROADM)
- Virtual Node
- VNode1, VNode2, VNode3
- Controller

- Aggregation
- 40G
- 30G
- 20G
- 10G
- 80G
Virtualization of Optical Resources

Virtualization of OXC

Virtualization of ROADM
Enablers for Optical Network Virtualization

FP6 PHOSPHORUS and FP7 GEYSERS projects

Convergence of IT & Optical Network Infrastructure

Dynamic Network Control and Management

New Optical Network Transport Technologies

New optical network services

IaaS

Optical Network Virtualization

“Experimental Demonstration of a Gridless Multi-granular Optical Network Supporting Flexible Spectrum Switching”, OFC’11

“Field Trial of a 1.5 Tb/s Adaptive and Gridless OXC Supporting Elastic 1000-Fold Bandwidth Granularity”, ECOC’11
GEYSERS Architecture
Enabled by Optical Network Virtualization
Specific Issues in Optical Network Virtualization

- Optical networks are analogue in nature
 - More complexity than L2/L3 (digital domain) virtualization as a result of physical layer impairments and constraints
 - Slice isolation is a challenge in optical networks

- Physical layer impairments
 - Affect the isolation between VIs
 - Newly composed VIs will affect the existing ones
 - Affect the ultimate feasibility of VIs

- Wavelength continuity constraint
 - Affect the network resource utilization
Relevant Contributions from GEYSERS

- Optical network virtualization aware of PLIs
- PLI-aware virtual optical network composition
 - Q tool to assess the PLIs
 - PLI-aware wavelength assignment
- Virtual optical network mapping
 - Direct mapping
 - Indirect mapping
 - Shortest path routing algorithm
 - Mixed ILP
- Energy efficiency in integrated IT and optical network infrastructures
IaaS Architecture Enabled by Optical Network Virtualization Aware of PLIs

Network Control Plane

Optical Virtual Network Control and Management Layer

Virtual Optical Network-1

Virtual Optical Network-n

Optical Virtual Network Composition Layer

Optical Physical Infrastructure Layer

PLI monitor & evaluator
DyNAmIC: Datacenters and Network infrAstructures coordination for Cloud service delivery (FP7 Call 8)
Thank you